バナー
ホーム

温度試験室

温度試験室

  • Industry-Specific Selection Guide: Key Technical Specs for Temperature Test Chambers Industry-Specific Selection Guide: Key Technical Specs for Temperature Test Chambers
    Jan 05, 2026
    1. Electronics Industry (Chips, Components) Q: Does inner tank size and material affect testing for small precision components? A: Select 36-100L small-volume inner tank (reduces temperature fluctuation); prioritize 304 stainless steel (corrosion-resistant, uniform heat conduction). Confirm multi-point temperature collection (≥8 points) support. Hongzhan offers customizable zoned temperature measurement, synchronous data upload, and chip batch testing compatibility.   Q: Will the refrigeration system degrade after 72 hours of continuous high-intensity testing? A: Focus on refrigeration configuration: choose two-stage cascade refrigeration (more stable than single-stage) with imported compressors (Danfoss/Coppa). Hongzhan equipment features MTBF of 20,000 hours, no continuous operation attenuation, and overload protection.   2. New Energy Industry (Batteries, Charging Piles) Q: For battery testing with explosion-proof requirements, how to judge equipment explosion-proof rating and safety design? A: Must comply with ATEX explosion-proof certification. Inner tank equipped with explosion-proof pressure relief valve and inert gas inlet; circuit adopts flameproof design. Hongzhan customizes Ex d IIB T4 explosion-proof test chambers, suitable for lithium battery thermal runaway simulation.   Q: Can equipment heating/cooling rate meet large-capacity battery pack testing? Is energy consumption high? A: Select custom models ≥1000L with temperature change rate ≥10℃/min; adopt CO₂ natural refrigerant system (38% lower energy consumption than traditional). Hongzhan optimizes refrigeration circuits for new energy, maintaining stable rates under heavy loads and saving over 10,000 yuan in annual electricity costs.   3. Aerospace Industry (Components, Aircraft Assemblies) Q: Can temperature uniformity meet standards in extreme temperature ranges (-80℃ to 200℃)? A: Select equipment with "PID self-tuning + fuzzy control"; inner tank adopts honeycomb air duct design (reduces temperature difference). Hongzhan maintains uniformity ≤1.5℃ even at -80℃, passes GJB military standard certification, suitable for simulating extreme high-altitude environments.   Q: Can equipment connect to high-level data acquisition systems? Is data transmission stable? A: Confirm RS485/Ethernet interface support, compatibility with LabVIEW/Excel, data sampling rate ≥1 time/second, and storage capacity ≥1 million records. Hongzhan equipment has electromagnetic shielding, ensuring interference-free transmission and seamless integration with aerospace research systems.   4. Medical Industry (Consumables, Devices) Q: Medical consumables testing requires high inner tank cleanliness; what are the relevant equipment designs? A: Inner tank made of 316L medical-grade stainless steel (sterilization efficiency ≥99%), with 120℃ automatic high-temperature sterilization; air duct designed with no dead corners (prevents dust accumulation). Hongzhan cleanroom test chambers comply with ISO 13485, suitable for syringe and medical sensor sterility testing.   Q: Test data needs 5+ years of traceability; do equipment storage and export functions meet requirements? A: Must have audit trail, encrypted data storage for ≥5 years, one-click export to PDF/Excel, and tamper-proof design. Hongzhan equipment is equipped with industrial-grade storage modules, meeting FDA/CE regulatory requirements, facilitating medical device registration.   Industry-Specific Selection Core Precise matching with industry-specific demands is key: Electronics: Focus on precise temperature control and small-volume adaptation New Energy: Prioritize explosion-proof, wide temperature range, and large-load capabilities  Aerospace: Emphasize extreme temperature resistance and high-level data connectivity  Medical: Highlight compliance, cleanliness, and data traceability     Avoid blind pursuit of uniform parameters; conduct targeted screening per industry standards (GJB, ISO 13485). Guangdong Hongzhan Technology Equipment provides industry-customized solutions, covering core technical requirements across fields. With professional certifications and compatible designs, it helps customers avoid selection pitfalls and achieve precise matching.
    続きを読む
  • Equipment Selection Guide: Ovens vs. Temperature Test Chambers Equipment Selection Guide: Ovens vs. Temperature Test Chambers
    Jan 04, 2026
        Equipment selection directly impacts efficiency, quality and data reliability. Standard ovens, precision ovens and temperature-humidity test chambers have distinct functional boundaries and application scenarios. Many enterprises suffer cost waste or functional insufficiency due to improper selection. This guide clarifies selection logic, breaks down matching schemes, avoids common pitfalls and provides precise guidance based on practical scenarios. 1. Core Selection Logic Adhere to the four-step framework of defining demand types → verifying temperature accuracy → supplementing environmental requirements → matching budget to clarify equipment selection boundaries. Step 1: Define Demand Types Choose oven series for process applications (drying, curing, etc.). Choose temperature-humidity test chambers for environmental reliability verification (extreme temperature variation, humidity exposure). Note: Ovens lack cooling function and cannot replace test chambers. Step 2: Verify Temperature Control Accuracy Standard ovens: Suitable for applications allowing ±5℃ temperature deviation. Precision ovens: Required for high-precision scenarios (±1℃ tolerance, e.g., electronic packaging, medical sterile drying). Temperature-humidity test chambers: Ideal for extreme environment testing, with accuracy up to ±1℃ (even ±0.5℃ for premium models). Step 3: Supplement Environmental Requirements Ovens: Applicable for ambient temperature heating only. Temperature-humidity test chambers (including humidity-controlled models): Necessary for low-temperature (-20℃ ~ -70℃), cyclic temperature variation or humidity control (e.g., 85℃/85%RH) applications. Note: Precision ovens do not support cooling or humidity control functions. Step 4: Match Budget Standard ovens (thousands of CNY): For basic drying tasks with limited budget. Precision ovens (10,000 ~ 100,000 CNY): For processes requiring high precision and stability. Temperature-humidity test chambers (100,000 ~ hundreds of thousands of CNY): For professional environmental testing; reserve budget for operation and maintenance. 2. Typical Application Scenarios: Demand-Equipment Matching This section breaks down matching schemes for three key sectors (electronics, automotive, medical & research) to provide intuitive references. Electronics Industry Simple component drying (±5℃ tolerance): Standard oven PCB solder paste curing (±0.5℃ accuracy, ±1℃ uniformity, multi-stage temperature control): Precision oven Chip cyclic testing (-40℃ ~ 125℃, data traceability required): Temperature-humidity test chamber Automotive Industry Basic part drying (±5℃ tolerance): Standard oven Sensor 24-hour aging test at 85℃ (±0.3℃ accuracy): Precision oven Battery pack rapid temperature cycling test (-40℃ ~ 85℃): Rapid temperature change test chamber Medical & Research Industry Routine consumable drying (±5℃ tolerance): Standard oven Syringe & catheter sterile drying (±0.5℃ accuracy, clean inner chamber, data traceability): Precision oven with 316 stainless steel enclosure Plastic material thermal stability study (-30℃ ~ 150℃): Temperature-humidity test chamber 3. Common Selection Pitfalls: Risk Avoidance Misconceptions often lead to wrong selections. Focus on avoiding these three key pitfalls: Pitfall 1: Using standard ovens instead of precision ovens Short-term cost reduction may cause higher product rejection rates and increased long-term costs. Solution: Always choose precision ovens for applications requiring ±1℃ accuracy; improved yield will offset the incremental cost. Pitfall 2: Using precision ovens for temperature cycling tests Ovens lack cooling capability, leading to test failure. Solution: Directly select temperature-humidity test chambers for low-temperature or cyclic temperature variation tests. Pitfall 3: Blindly pursuing high-spec test chambers Results in cost waste and underutilization of functions. Solution: Select equipment strictly based on actual test parameters to balance demand and budget. Conclusion The core of equipment selection lies in precise demand matching. Clarifying demand types and core parameters, combining scenario requirements with budget planning, and avoiding common pitfalls will maximize equipment value, support production quality improvement and boost R&D efficiency.
    続きを読む
  • How to avoid operation mistakes with Industrial Vacuum Ovens? Must-read usage guide for beginners!
    Dec 08, 2025
    I. Pre-Use Preparation 1. Equipment Inspection: Ensure the oven shell is well grounded, with no damage to the power cord and secure connections; check that vacuum valves and sealing rings are intact without aging or air leakage; verify that the vacuum pump oil level is within the scale range and the oil is clear and free of impurities. 2. Material Preparation: Materials to be dried must comply with the oven's applicable scope (flammable, explosive, and corrosive materials are prohibited). Place materials evenly in the baking tray, avoiding excessive stacking (not exceeding 1/2 of the tray height), and ensure there are ventilation gaps between materials and the oven wall, as well as between materials. 3. Environment Check: Ensure no flammable or explosive items are around the oven, the ventilation is good, and a maintenance space of at least 50cm is reserved; check that instruments such as the temperature controller and vacuum gauge are in zero state II. Operation Procedure 1. Loading Materials into the Oven Open the oven door, place the baking tray with materials steadily on the inner shelf, ensuring the tray is firmly positioned; close the oven door and tighten the door latch to ensure good sealing. 2. Vacuum System Operation • Open the vacuum valves (first the oven's own valve, then the vacuum pump valve) and start the vacuum pump. • Monitor the vacuum gauge; when the vacuum degree reaches the process requirement (usually -0.08~-0.1MPa, subject to material requirements), first close the vacuum pump valve, then turn off the vacuum pump to maintain the vacuum state. 3. Temperature Control Setting and Operation • Connect the oven's main power supply, turn on the temperature controller, and set the "target temperature" and "holding time" according to process requirements (for stepwise heating, set parameters for each stage in sequence). • Turn on the heating switch; the oven enters the heating stage. Check that the displayed temperature of the controller matches the actual temperature (if a temperature probe is available) to ensure stable heating. • When the target temperature is reached, the system automatically enters the holding stage. During this period, regularly check the vacuum degree; if it is lower than the set value, repeat the vacuuming operation. 4. Shutdown and Material Retrieval • After the holding period ends, turn off the heating switch and wait for the internal temperature to drop to a safe range (usually ≤50℃, subject to material properties). • Slowly open the vacuum relief valve; after the vacuum gauge returns to zero, open the oven door and retrieve the materials (wear high-temperature resistant gloves to avoid scalding). • Turn off the main power supply, clean residual debris inside the oven, and keep the equipment clean. III. Key Notes • Heating is strictly prohibited under vacuum conditions. Vacuuming must be done before heating to avoid abnormal internal pressure. • If abnormal noise, odor, or instrument malfunction occurs during heating, immediately shut down and cut off power, and troubleshoot before reuse. • Flammable and explosive materials must undergo safety testing. They can only be used under supervision after confirming no risks, and the oven must be equipped with explosion-proof devices. • If the vacuum pump overheats or leaks oil during operation, shut it down for inspection promptly. Replace the pump oil regularly (recommended every 300 hours). IV. Daily Maintenance 1. After daily use, clean the inner wall and shelves of the oven, and wipe the surface of the sealing ring to prevent foreign objects from affecting the sealing effect. 2. Weekly, check the flexibility of the vacuum valve switch and apply anti-rust lubricating oil to moving parts such as door hinges. 3. Monthly, calibrate the temperature controller and vacuum gauge to ensure accurate parameters; inspect the appearance of heating tubes and replace them promptly if damaged.
    続きを読む
  • Small Rapid Temperature Change (Wet Heat) Test Chamber
    Nov 01, 2025
    In response to the testing and R&D requirements of electronic components such as semiconductors and automotive electronics, Lab Companion has developed a smaller capacity small rapid temperature change (wet heat) test chamber. While maintaining the advantages of standard rapid temperature change test chambers, it can also meet the needs of customers who have requirements for space size, with a single-phase 220VAC voltage specification. It can also meet the equipment usage requirements of customers in civilian office areas such as research institutions and universities. Its main features are as follows: 1. It has powerful heating and cooling performance 2. Heating rate: 15℃/min; Cooling rate: 15℃/min 3. (Temperature range: -45℃ to +155℃) 4. Single-phase 220VAC, meeting the electricity demands of more customers 5. Single-phase 220VAC, suitable for industrial and civil power supply specifications, can meet the equipment power demands of customers in civil office areas such as research institutions and universities. 6. The body is small and exquisite, with a compact structure and easy to move 7. The miniaturized structure design of the test chamber can effectively save configuration space. 8. The inner tank volume is 100L, the width is 600mm, the depth is less than 1400mm, and the product volume is less than 1.1m ³. It is suitable for the vast majority of residential and commercial elevators in China (GB/T7025.1). 9. The standard universal wheels enable the product to move freely at the installation site. 10. Standard air-cooled specification is provided, facilitating the movement and installation of the product 11. At the same time, it saves customers the cost and space of configuring cooling towers. 12. A more ergonomic operation touch screen design 13. Through the multi-angle adjustment of the touch screen, it can meet the operation needs and provide the best field of vision for users of different heights, making it more convenient and comfortable. 14. Energy-saving cold output temperature and humidity control system, with dual PID and water vapor partial pressure control, features mature technology and extremely high precision. 15. Network control and data acquisition can be carried out through the interface (RS-485/GPIB/Web Lan/RS-232C). 16. It is standard-equipped with left and right cable holes (50mm), which facilitates the connection of power on the sample and the conduct of multiple measurements. 17. The controller adopts a color LCD touch screen, which is simple and convenient to operate 18. Through the controller, two control methods, fixed value and program, can be selected to adapt to different applications. 19. The program control can be set to 100 modes, with 99 steps for each mode. Repeat the loop up to 999 times. 20. Multiple languages can be easily switched (Simplified Chinese, English), and test data can be stored on a USB flash drive.
    続きを読む
  • How to Prevent Condensation when Conducting Low-temperature Tests in a Temperature Test Chamber
    Oct 30, 2025
    When conducting low-temperature tests in a temperature test chamber, preventing condensation is a crucial and common issue. Condensation not only affects the accuracy of test results, but may also cause irreversible damage to products, such as short circuits, metal corrosion, and degradation of material performance.   The essence of condensation is that when the surface temperature of the product drops below the "dew point temperature" of the ambient air, water vapor in the air condenses into liquid water on the product surface. Based on this principle, the core idea for preventing condensation is to avoid the surface temperature of the product being lower than the dew point temperature of the ambient air. The specific methods are as follows:   Controlling the rate of temperature change is the most commonly used and effective method. By slowing down the rate of cooling or heating, the temperature of the product can keep up with the changes in ambient temperature, thereby reducing the temperature difference between the two and preventing the surface temperature of the product from falling below the dew point. 2. Use dry air or nitrogen to directly reduce the absolute humidity of the air inside the test chamber, thereby significantly lowering the dew point temperature. Even if the surface of the product is very cold, as long as the dew point of the ambient air is lower, condensation will not occur. It is usually used for products that are extremely sensitive to moisture, such as precision circuit boards and aerospace components, etc. 3. Local heating or insulation can ensure that the surface temperature of key components (such as circuit boards and sensors) is always above the dew point, which is more suitable for products with complex structures where only certain areas are sensitive to humidity. 4. Skillfully arrange the temperature cycle through programming to avoid exposing the product at the stage when condensation is most likely to occur. After the test is completed, do not directly open the box door in a normal temperature and humidity environment. Dry gas should first be introduced into the box and the temperature should be slowly raised to room temperature. After the product temperature has also risen, the box can be opened and taken out.   For a typical low-temperature test, the following process can be followed to prevent condensation to the greatest extent First, place the product and the test chamber in a standard laboratory environment for a sufficient period of time to stabilize their condition. Subsequently, within the range close to room temperature to "0°", set up one or more short-term insulation platforms. Or maintain it at the target low temperature for a sufficient period of time, during which the temperature inside and outside the product is consistent, and usually no new condensation will form. Also, set a heating rate that is slower than the cooling rate. Set up an insulation platform at the initial stage of temperature rise and when approaching the ambient temperature. After the temperature rise is completed, do not open the door immediately. Keep the box door closed and let the product stand in the box for "30 minutes to 2 hours" (depending on the heat capacity of the product), or introduce dry air into the box to accelerate the equalization process. After confirming that the product temperature is close to the ambient temperature, open the box door and take out the product.   The best practice is to use the above methods in combination. For instance, in most cases, "controlling the temperature variation rate" combined with "optimizing the test program (especially during the recovery stage)" can solve 90% of the condensation problems. For military or automotive electronics tests with strict requirements, it may be necessary to simultaneously stipulate the temperature variation rate and require the introduction of dry air.
    続きを読む
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    続きを読む
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    続きを読む
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    続きを読む
  • 試験チャンバーに適した冷却方法を選択するには?
    Sep 09, 2025
    空冷と水冷は、冷凍装置における主流の放熱方式です。両者の最も根本的な違いは、システムで発生した熱を外部環境に放出するために使用する媒体の違いにあります。空冷は空気を使用するのに対し、水冷は水を使用します。この根本的な違いにより、設置、使用方法、コスト、適用シナリオにおいて、両者の間には多くの違いが生じています。 1. 空冷システム空冷システムの動作原理は、ファンを通して空気を強制的に送り込み、その中心となる放熱部品であるフィン付きコンデンサーに送風することで、コンデンサー内の熱を奪い、周囲の空気中に放散することです。設置は非常にシンプルで柔軟性に優れています。電源に接続するだけで稼働し、追加のサポート設備は不要なため、設置場所の改修は最小限で済みます。この冷却性能は周囲温度に大きく左右されます。暑い夏や高温で換気が不十分な環境では、空気とコンデンサーの温度差が小さくなるため、放熱効率が著しく低下し、冷却能力の低下と運転時の消費電力の増加につながります。さらに、運転中はファンの騒音が大きくなります。初期投資は通常低く、日常​​のメンテナンスも比較的容易です。主な作業は、コンデンサーフィンの汚れを定期的に清掃し、スムーズな換気を確保することです。主な運用コストは電気代です。空冷システムは、中小規模の機器、電気は豊富だが水資源が乏しい、または水へのアクセスが不便な地域、環境温度を制御できる研究室、予算が限られているプロジェクト、またはシンプルで迅速な設置プロセスを好むプロジェクトに最適です。 2. 水冷システム水冷システムの動作原理は、専用の水冷コンデンサーを通過する循環水を用いてシステムの熱を吸収・放散することです。加熱された水流は通常、屋外の冷却塔に輸送され、そこで冷却され、再び循環されます。設置は複雑で、冷却塔、水ポンプ、配水管網、水処理装置など、外部給水システム一式が必要です。これは、機器の設置場所を固定するだけでなく、敷地計画とインフラに対する高い要求を課します。システムの放熱性能は非常に安定しており、外部環境温度の変化による影響は基本的に受けません。同時に、機器本体付近の運転音は比較的低いものの、初期投資は高額です。電力消費に加えて、日常運転中の継続的な水資源消費などのコストも発生します。メンテナンス作業もより専門的で複雑であり、スケール形成、腐食、微生物の増殖を防ぐ必要があります。水冷システムは主に、大型で高出力の産業用機器、周囲温度が高い、または換気が悪い作業場、また極めて高い温度安定性と冷却効率が求められる状況に適しています。 空冷と水冷の選択は、絶対的な優劣を判断することではなく、特定の状況に最適なソリューションを見つけることです。決定は、次の考慮事項に基づいて行う必要があります。まず、大型の高出力機器は通常、安定した性能を得るために水冷を好みます。同時に、実験室の地理的気候(高温かどうか)、給水状況、設置スペース、換気状況を評価する必要もあります。次に、比較的低い初期投資を重視する場合は、空冷が適切な選択です。長期的な運用エネルギー効率と安定性を重視し、比較的高い初期構築コストを気にしない場合は、水冷の方が有利です。最後に、複雑な水システムの定期的なメンテナンスを実施できる専門的な能力があるかどうかを検討する必要があります。
    続きを読む
  • ラボコンパニオン真空オーブンの動作原理 ラボコンパニオン真空オーブンの動作原理
    Sep 02, 2025
    Lab Companion真空オーブンは、低圧条件下で材料を乾燥させる精密装置です。その動作原理は、真空状態では液体の沸点が大幅に低下するという科学的な中核原理に基づいています。その動作プロセスは、以下の3つの主要なプロセスに分けられます。 1. 真空生成:真空ポンプセットを用いてオーブンチャンバー内の空気を連続的に排出することで、内部環境を大気圧をはるかに下回るレベル(通常は10Pa、あるいはそれ以上の真空度)まで減圧します。この動作には2つの目的があります。1つ目は、チャンバー内の酸素含有量を大幅に低減し、加熱プロセス中の材料の酸化を防ぐことです。2つ目は、核となる物理プロセスである低温沸騰のための条件を作り出すことです。2. 加熱によるエネルギー供給:真空環境が確立されると、加熱システム(通常は電熱線または加熱プレートを使用)が作動を開始し、チャンバー内の材料に熱エネルギーを供給します。内部圧力が極めて低いため、材料に含まれる水分やその他の溶媒の沸点が急激に低下します。例えば、真空度が-0.085MPaの場合、水の沸点は約45℃まで低下します。これは、材料を従来の100℃まで加熱する必要がなく、内部の水分をより低い温度で急速に蒸発させることを意味します。3. 蒸気除去:蒸発によって生成された水蒸気やその他の溶剤蒸気は、材料の表面および内部から放出されます。キャビティ内の圧力差により、これらの蒸気は急速に拡散し、真空ポンプによって連続的に吸引されて外部環境に排出されます。このプロセスは継続的に進行するため、乾燥環境が維持され、キャビティ内での蒸気の再凝縮が防止されます。これにより、乾燥反応が継続的に、かつ効率的に進行し、脱水が行われます。 真空オーブンは「低温・高効率乾燥」という特徴を備えているため、医薬品、化学薬品、電子工学、食品、材料科学の分野で広く使用されており、特に貴重品、敏感な材料、従来の方法では乾燥が難しい材料の処理に適しています。
    続きを読む
  • 新エネルギー材料の研究における高温・低温試験室の応用 新エネルギー材料の研究における高温・低温試験室の応用
    Aug 30, 2025
    1. リチウムイオン電池:材料、セル、モジュールに至るまで、リチウムイオン電池の研究開発の全段階で高温および低温テストが行​​われます。 2. 材料レベル:正極材料、負極材料、電解質、セパレータなどの基礎材料について、様々な温度における基本的な物理的・化学的特性を評価します。例えば、低温における負極材料のリチウムめっきリスク試験や、高温におけるセパレータの熱収縮率(MSDS)の調査などです。 3. セルレベル:極寒地(-40℃~-20℃など)における厳しい冬をシミュレートし、バッテリーの低温始動、放電容量、レート性能を試験し、低温性能向上のためのデータサポートを提供します。高温(45℃、60℃など)でのサイクル充放電試験を実施することで、劣化を加速し、バッテリーの長期使用寿命と容量維持率を予測します。 4. 燃料電池:固体高分子型燃料電池(PEMFC)は、水と熱の管理に関して非常に厳しい要件を要求されます。コールドスタート性能は、燃料電池の実用化における重要な技術的ボトルネックです。試験室では、氷点下(例えば-30℃)の環境を模擬し、システムが凍結後に正常に起動できるかどうかを試験するとともに、氷結晶が触媒層と固体高分子型燃料電池に及ぼす機械的損傷を研究します。 5. 太陽光発電材料:太陽光パネルは屋外で25年以上使用され、昼夜を問わず四季折々の過酷な環境に耐える必要があります。昼夜の温度差(例えば、-40℃から85℃までの200サイクル)をシミュレートすることで、バッテリーセルのインターコネクトソルダーテープの熱疲労、封止材(EVA/POE)の劣化や黄ばみ、異なる積層材料間の接合信頼性などを試験し、剥離や破損を防止します。   最新の高温・低温試験室 単なる温度変化チャンバーではなく、複数の機能を統合したインテリジェントな試験プラットフォームです。この高度な試験チャンバーには観察窓と試験孔が備えられており、研究者は温度変化中のサンプルをリアルタイムで監視できます。
    続きを読む
  • 急速温度変化試験室の設置場所の選定 急速温度変化試験室の設置場所の選定
    Jun 27, 2025
    急速温度変化試験室の設置場所の選定: 隣接する壁からの距離は、環境試験室の役割と特性をスムーズに発揮させるために重要です。長期間にわたって15~45℃の温度と86%を超える相対環境湿度が確保できる場所を選択してください。 設置場所の動作温度は大きく変化してはなりません。 水平な面に設置する必要があります(設置時に道路の水平を確認するために水準器を使用してください)。 日光が当たらない場所に設置してください。 自然換気が良好な場所に設置してください。 可燃性物質、爆発性物質、高温熱源が除去された場所に設置する必要があります。 ほこりの少ない場所に設置してください。 電源システムのスイッチング電源にできるだけ近い場所に設置してください。
    続きを読む
1 2
合計2ページ

伝言を残す

伝言を残す
弊社の製品にご興味があり、詳細を知りたい場合は、こちらにメッセージを残してください。できるだけ早く返信させていただきます。
提出する

ホーム

製品

ワッツアップ

お問い合わせ