バナー
ホーム

低温試験室

低温試験室

  • Small Rapid Temperature Change (Wet Heat) Test Chamber
    Nov 01, 2025
    In response to the testing and R&D requirements of electronic components such as semiconductors and automotive electronics, Lab Companion has developed a smaller capacity small rapid temperature change (wet heat) test chamber. While maintaining the advantages of standard rapid temperature change test chambers, it can also meet the needs of customers who have requirements for space size, with a single-phase 220VAC voltage specification. It can also meet the equipment usage requirements of customers in civilian office areas such as research institutions and universities. Its main features are as follows: 1. It has powerful heating and cooling performance 2. Heating rate: 15℃/min; Cooling rate: 15℃/min 3. (Temperature range: -45℃ to +155℃) 4. Single-phase 220VAC, meeting the electricity demands of more customers 5. Single-phase 220VAC, suitable for industrial and civil power supply specifications, can meet the equipment power demands of customers in civil office areas such as research institutions and universities. 6. The body is small and exquisite, with a compact structure and easy to move 7. The miniaturized structure design of the test chamber can effectively save configuration space. 8. The inner tank volume is 100L, the width is 600mm, the depth is less than 1400mm, and the product volume is less than 1.1m ³. It is suitable for the vast majority of residential and commercial elevators in China (GB/T7025.1). 9. The standard universal wheels enable the product to move freely at the installation site. 10. Standard air-cooled specification is provided, facilitating the movement and installation of the product 11. At the same time, it saves customers the cost and space of configuring cooling towers. 12. A more ergonomic operation touch screen design 13. Through the multi-angle adjustment of the touch screen, it can meet the operation needs and provide the best field of vision for users of different heights, making it more convenient and comfortable. 14. Energy-saving cold output temperature and humidity control system, with dual PID and water vapor partial pressure control, features mature technology and extremely high precision. 15. Network control and data acquisition can be carried out through the interface (RS-485/GPIB/Web Lan/RS-232C). 16. It is standard-equipped with left and right cable holes (50mm), which facilitates the connection of power on the sample and the conduct of multiple measurements. 17. The controller adopts a color LCD touch screen, which is simple and convenient to operate 18. Through the controller, two control methods, fixed value and program, can be selected to adapt to different applications. 19. The program control can be set to 100 modes, with 99 steps for each mode. Repeat the loop up to 999 times. 20. Multiple languages can be easily switched (Simplified Chinese, English), and test data can be stored on a USB flash drive.
    続きを読む
  • How to Prevent Condensation when Conducting Low-temperature Tests in a Temperature Test Chamber
    Oct 30, 2025
    When conducting low-temperature tests in a temperature test chamber, preventing condensation is a crucial and common issue. Condensation not only affects the accuracy of test results, but may also cause irreversible damage to products, such as short circuits, metal corrosion, and degradation of material performance.   The essence of condensation is that when the surface temperature of the product drops below the "dew point temperature" of the ambient air, water vapor in the air condenses into liquid water on the product surface. Based on this principle, the core idea for preventing condensation is to avoid the surface temperature of the product being lower than the dew point temperature of the ambient air. The specific methods are as follows:   Controlling the rate of temperature change is the most commonly used and effective method. By slowing down the rate of cooling or heating, the temperature of the product can keep up with the changes in ambient temperature, thereby reducing the temperature difference between the two and preventing the surface temperature of the product from falling below the dew point. 2. Use dry air or nitrogen to directly reduce the absolute humidity of the air inside the test chamber, thereby significantly lowering the dew point temperature. Even if the surface of the product is very cold, as long as the dew point of the ambient air is lower, condensation will not occur. It is usually used for products that are extremely sensitive to moisture, such as precision circuit boards and aerospace components, etc. 3. Local heating or insulation can ensure that the surface temperature of key components (such as circuit boards and sensors) is always above the dew point, which is more suitable for products with complex structures where only certain areas are sensitive to humidity. 4. Skillfully arrange the temperature cycle through programming to avoid exposing the product at the stage when condensation is most likely to occur. After the test is completed, do not directly open the box door in a normal temperature and humidity environment. Dry gas should first be introduced into the box and the temperature should be slowly raised to room temperature. After the product temperature has also risen, the box can be opened and taken out.   For a typical low-temperature test, the following process can be followed to prevent condensation to the greatest extent First, place the product and the test chamber in a standard laboratory environment for a sufficient period of time to stabilize their condition. Subsequently, within the range close to room temperature to "0°", set up one or more short-term insulation platforms. Or maintain it at the target low temperature for a sufficient period of time, during which the temperature inside and outside the product is consistent, and usually no new condensation will form. Also, set a heating rate that is slower than the cooling rate. Set up an insulation platform at the initial stage of temperature rise and when approaching the ambient temperature. After the temperature rise is completed, do not open the door immediately. Keep the box door closed and let the product stand in the box for "30 minutes to 2 hours" (depending on the heat capacity of the product), or introduce dry air into the box to accelerate the equalization process. After confirming that the product temperature is close to the ambient temperature, open the box door and take out the product.   The best practice is to use the above methods in combination. For instance, in most cases, "controlling the temperature variation rate" combined with "optimizing the test program (especially during the recovery stage)" can solve 90% of the condensation problems. For military or automotive electronics tests with strict requirements, it may be necessary to simultaneously stipulate the temperature variation rate and require the introduction of dry air.
    続きを読む
  • Flame-retardant PP Materials in Industry Working Principle
    Oct 27, 2025
    Polypropylene (PP) itself is a highly flammable hydrocarbon with a limiting oxygen index (LOI) of only 17.8%. It will continue to burn even after being removed from the fire source. The core principle of flame-retardant PP is to interrupt or delay its combustion cycle through physical and chemical means. Combustion requires the simultaneous existence of three elements: combustible material, heat and oxygen. The function of flame retardants is to destroy this "burning triangle".   In industry, flame retardancy is mainly achieved by adding flame retardants to PP. Different types of flame retardants function through the following mechanisms: 1. Gas-phase flame retardant mechanism This is one of the most common mechanisms, especially applicable to traditional halogen-based flame retardants. When flame retardants are heated and decomposed, they can capture the free radicals (such as H· and HO·) that maintain the combustion chain reaction in the combustion reaction zone (flame), causing their concentrations to drop sharply and thus interrupting the combustion. 2. Condensed phase flame retardant mechanism This is the most mainstream mechanism of halogen-free flame-retardant PP. Flame retardants promote the formation of a uniform and dense carbon layer on the surface of polymers. This layer of carbon has three major functions. The first step is to prevent external heat from entering the interior of the polymer. Secondly, it prevents the escape of flammable gases inside and the entry of external oxygen. Finally, it inhibits the further pyrolysis of the polymer and the generation of smoke. When a fire occurs, the acid source promotes the dehydration, cross-linking and carbonization of the carbon source. Meanwhile, the large amount of gas produced by the decomposition of the gas source causes the softened carbon layer to expand, eventually forming a porous, dense and strong foam carbon layer, which protects the underlying PP like "armor". 3. Cooling/heat absorption mechanism Flame retardants absorb a large amount of heat during the decomposition process, reducing the surface temperature of polymers and making it difficult for them to continuously pyrolyze and produce flammable gases. Typical representatives include aluminium hydroxide (ATH) and magnesium hydroxide (MH). When they decompose, they absorb a large amount of heat (endothermic reaction) and release water vapor. The water vapor can not only dilute flammable gases but also play a cooling role. 4. Dilution mechanism Flame retardants decompose to produce a large amount of non-flammable gases (such as water vapor and CO₂, etc.), which can dilute the concentration of flammable gases and oxygen near the polymer surface, making combustion unsustainable. Both the gas sources of metal hydroxides and intumescent flame retardants have this function.   In conclusion, the working principle of flame-retardant PP in industry is a complex process involving the synergy of multiple mechanisms. Modern flame-retardant PP technology is developing towards halogen-free, low smoke, low toxicity and high efficiency. Among them, the condensed phase flame-retardant mechanism represented by intumescent flame retardants (IFR) is the core of current research and application. By carefully designing flame-retardant formulas, the best balance can be achieved among flame-retardant efficiency, material mechanical properties, processing performance and cost.
    続きを読む
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    続きを読む
  • PCプラスチック材料の高温および低温試験規格 PCプラスチック材料の高温および低温試験規格
    Sep 04, 2024
    PCプラスチック材料の高温および低温試験規格1. 高温試験 80±2℃で4時間、常温で2時間放置した後、寸法、絶縁抵抗、耐電圧、キー機能、ループ抵抗が通常の要件を満たし、外観に変形、反り、脱ガムなどの異常現象はありません。キーの凸点は高温で崩れ、押圧力は小さくなりますが、評価はありません。2. 低温テスト-30±2℃に4時間、常温に2時間置いた後、寸法、絶縁抵抗、耐電圧、キー機能、ループ抵抗が通常の要件を満たし、外観に変形、反り、脱ガムなどの異常現象はありません。3. 温度サイクル試験70±2℃の環境に30分間置き、取り出して室温で5分間放置します。-20±2℃の環境に30分間置き、取り出して室温で5分間放置します。このような5サイクル後、寸法、絶縁抵抗、電圧抵抗、キー機能、回路抵抗は正常な要件を満たし、変形、反り、脱ガムなどの異常な現象は発生しません。キーの凸点は高温で崩壊し、押圧力は評価なしで小さくなります。4. 耐熱性温度40±2℃、相対湿度93±2%rhの環境に48時間置いた後、寸法、絶縁抵抗、耐電圧、キー機能、ループ抵抗が通常の要件を満たし、外観が変形、反り、またはガムが剥がれていません。キーの凸点は高温で崩れ、押す力は評価なしで小さくなります。プラスチック試験の国家標準値:Gb1033-86 プラスチック密度および相対密度試験方法Gbl636-79 成形プラスチックの見かけ密度の試験方法GB/ T7155.1-87 熱可塑性パイプおよびパイプ継手の密度測定部品:ポリエチレンパイプおよびパイプ継手の基準密度測定GB/ T7155.2-87 熱可塑性パイプおよび継手 -- 密度の測定 -- パート L: ポリプロピレンパイプおよび継手の密度の測定GB/T1039-92 プラスチックの機械的性質の試験に関する一般規則GB/ T14234-93 プラスチック部品の表面粗さGb8807-88 プラスチックミラー光沢試験方法GBL3022-9Lプラスチックフィルムの引張特性試験方法GB/ TL040-92 プラスチックの引張特性試験方法GB/T8804.1-88 熱可塑性パイプポリ塩化ビニルパイプの引張特性試験方法GB/ T8804.2-88 熱可塑性パイプの引張特性試験方法 ポリエチレンパイプHg2-163-65 プラスチック低温伸び試験方法GB/ T5471-85 熱硬化性成形試験片の製造方法HG/ T2-1122-77 熱可塑性サンプル調製方法GB/ T9352-88 熱可塑性圧縮サンプルの準備オーブンlabcompanion.cn ラボコンパニオン中国labcompanion.com.cn ラボコンパニオン中国lab-companion.com ラボコンパニオン labcompanion.com.hk ラボコンパニオン香港labcompanion.hk ラボコンパニオン香港labcompanion.de ラボコンパニオンドイツ labcompanion.it ラボコンパニオンイタリア labcompanion.es ラボコンパニオンスペイン labcompanion.com.mx ラボコンパニオンメキシコ labcompanion.uk ラボコンパニオン イギリスlabcompanion.ru ラボコンパニオンロシア labcompanion.jp ラボコンパニオンジャパン labcompanion.in ラボコンパニオンインド labcompanion.fr ラボコンパニオンフランスlabcompanion.kr ラボコンパニオン韓国
    続きを読む

伝言を残す

伝言を残す
弊社の製品にご興味があり、詳細を知りたい場合は、こちらにメッセージを残してください。できるだけ早く返信させていただきます。
提出する

ホーム

製品

ワッツアップ

お問い合わせ